Philosophy 159 - Homework 8

Brian Salomaki

2003 December 3

- 17.2 Proposition 1: The sentence S is a tautological consequence of the set T if and only if the set $T \cup \{\neg S\}$ is not tt-satisfiable.
- (⇒) Assume that the sentence S is a tautological consequence of the set \mathcal{T} . This means that every truth assignment which makes all of the sentences in \mathcal{T} true also makes S true. Looking for a contradiction, assume that the set $\mathcal{T} \cup \{\neg S\}$ is tt-satisfiable. This means that there is a single truth assignment which makes all of the sentences in $\mathcal{T} \cup \{\neg S\}$ true. This assignment makes $\neg S$ true. It also all of the sentences in \mathcal{T} true, so by assumption that S is a tautological consequence of \mathcal{T} , this also makes S true. So we have both S and $\neg S$, which gives us a contradiction. Thus, $\mathcal{T} \cup \{\neg S\}$ is not tt-satisfiable.
- (\Leftarrow) Assume that the set $\mathcal{T} \cup \{\neg S\}$ is not tt-satisfiable. Thus, there is no truth assignment which makes all of the sentences in $\mathcal{T} \cup \{\neg S\}$ true. Any truth assignment h must make at least one of the sentences in $\mathcal{T} \cup \{\neg S\}$ false. If we let h be any truth assignment which makes all of the sentences in \mathcal{T} true, it must therefore make $\neg S$ false, making S true. Thus, any truth assignment which makes all of the sentences in \mathcal{T} true also makes S true, which means that S is a tautological consequence of \mathcal{T} .
- 17.3 h_1 and h_2 are truth assignments which agree on all the atomic sentences in S. We want to show that $\hat{h}_1(S) = \hat{h}_2(S)$. Prove this by induction on wffs (as defined in exercise 16.12).

Base Case: If Q is an atomic sentence, then part (1) of the definition of \hat{h} tells us that $\hat{h}_1(Q) = h_1(Q)$ and $\hat{h}_2(Q) = h_2(Q)$. We know that h_1 and h_2 agree on Q, so \hat{h}_1 and \hat{h}_2 also agree on Q.

Inductive Step: Assume that Q and R are wffs such that $\hat{h}_1(Q) = \hat{h}_2(Q)$ and $\hat{h}_1(R) = \hat{h}_2(R)$.

Part (2) of the definition of \hat{h} tells us that $\hat{h}_1(\neg Q)$ depends only on (is exactly the opposite of) the value of $\hat{h}_1(Q)$, and similar for $\hat{h}_2(\neg Q)$. Because we know $\hat{h}_1(Q) = \hat{h}_2(Q)$, this tells us that $\hat{h}_1(\neg Q) = \hat{h}_2(\neg Q)$.

Part (3) of the definition of \hat{h} tells us that $\hat{h}_1(Q \wedge R)$ depends only on the values of $\hat{h}_1(Q)$ and $\hat{h}_1(R)$. Similar for $\hat{h}_2(Q \wedge R)$. Because we know $\hat{h}_1(Q) = \hat{h}_2(R)$ and $\hat{h}_1(Q) = \hat{h}_2(R)$, this tells us that $\hat{h}_1(Q \wedge R) = \hat{h}_2(Q \wedge R)$.

Parallel reasoning gives $\hat{h}_1(Q \vee R) = \hat{h}_2(Q \vee R)$, $\hat{h}_1(Q \to R) = \hat{h}_2(Q \to R)$ and $\hat{h}_1(Q \leftrightarrow R) = \hat{h}_2(Q \leftrightarrow R)$.

Because all wffs are built up according to the definition in this manner, this shows that $\hat{h}_1(S) = \hat{h}_2(S)$ for any wff S.

17.5 $T: \{\neg(\mathsf{Cube}(\mathsf{a}) \lor \mathsf{Small}(\mathsf{a})), \mathsf{Cube}(\mathsf{b}) \to \mathsf{Cube}(\mathsf{a}), \mathsf{Small}(\mathsf{a}) \lor \mathsf{Small}(\mathsf{b})\}$

Formal Consistency: We want to show that $\mathcal{T} \nvDash_{\mathsf{T}} \bot$. Towards a proof by contradiction, assume $\mathcal{T} \vdash_{\mathsf{T}} \bot$. By the soundness theorem, this means that \bot is a tautological consequence of \mathcal{T} . Thus, every truth assignment which makes all of the sentences in \mathcal{T} true will also make \bot true. However, we can

find a truth assignment (Cube(a) = FALSE, Cube(b) = FALSE, Small(a) = FALSE, Small(b) = TRUE) which makes all of the sentences in \mathcal{T} true without generating a contradiction. This contradicts our assumption that $\mathcal{T} \vdash_T \bot$, and thus $\mathcal{T} \nvdash_T \bot$.

Formal Completeness: By Lemma 5, we want to show that, for every atomic sentence A in our language, $\mathcal{T} \vdash_{\mathcal{T}} A$ or $\mathcal{T} \vdash_{\mathcal{T}} \neg A$. Our language includes two predicates and two constants, for a total of four atomic sentences: Cube(a), Small(a), Cube(b), and Small(b). The first sentence of \mathcal{T} gives us \neg Cube(a) and \neg Small(a). The second sentence, combined with \neg Cube(a), proves \neg Cube(b). The final sentence, combined with \neg Small(a), proves Small(b).

17.6 $\mathcal{T}: \{\neg(\mathsf{Cube}(\mathsf{a}) \vee \mathsf{Small}(\mathsf{a})), \mathsf{Cube}(\mathsf{b}) \rightarrow \mathsf{Cube}(\mathsf{a}), \mathsf{Small}(\mathsf{a}) \vee \mathsf{Small}(\mathsf{b})\}$

The truth assignment h which makes all of the sentences in \mathcal{T} true assigns the following values to the atomic sentences of the language: Cube(a) = FALSE, Cube(b) = FALSE, Small(a) = FALSE, Small(b) = TRUE.

- 17.7 \mathcal{T} : $\{\neg(\mathsf{Cube}(\mathsf{a}) \land \mathsf{Small}(\mathsf{a})), \mathsf{Cube}(\mathsf{b}) \rightarrow \mathsf{Cube}(\mathsf{a}), \mathsf{Small}(\mathsf{a}) \lor \mathsf{Small}(\mathsf{b})\}$ Alphabetical ordering of atomic sentences: $\mathsf{A}_1 = \mathsf{Cube}(\mathsf{a}), \ \mathsf{A}_2 = \mathsf{Cube}(\mathsf{b}), \ \mathsf{A}_3 = \mathsf{Small}(\mathsf{a}), \ \mathrm{and} \ \mathsf{A}_4 = \mathsf{Small}(\mathsf{b}).$
 - Neither Cube(a) nor ¬Cube(a) is provable from T, so we add Cube(a) to the set.
 - Neither Cube(b) nor $\neg Cube(b)$ is provable from \mathcal{T} , so we add Cube(b) to the set.
 - From $\neg(Cube(a) \land Small(a))$ and Cube(a), we can prove $\neg Small(a)$.
 - From $Small(a) \vee Small(b)$ and $\neg Small(a)$, we can prove Small(b).

The expanded formally complete set is:

 $\{\neg(\mathsf{Cube}(\mathsf{a})\land\mathsf{Small}(\mathsf{a})), \mathsf{Cube}(\mathsf{b}) \to \mathsf{Cube}(\mathsf{a}), \mathsf{Small}(\mathsf{a})\lor\mathsf{Small}(\mathsf{b}), \mathsf{Cube}(\mathsf{a}), \mathsf{Cube}(\mathsf{b})\}$ The truth assignment h is such that: $h(\mathsf{Cube}(\mathsf{a})) = \mathsf{TRUE}, h(\mathsf{Cube}(\mathsf{b})) = \mathsf{TRUE}, h(\mathsf{Small}(\mathsf{a})) = \mathsf{FALSE}, \text{ and } h(\mathsf{Small}(\mathsf{b})) = \mathsf{TRUE}.$

A world making all of the sentences in the formally complete set is shown below.

17.14 Lemma 3, Part 4: $\mathcal{T} \vdash_{\mathsf{T}} (\mathsf{R} \to \mathsf{S})$ iff $\mathcal{T} \nvdash_{\mathsf{T}} \mathsf{R}$ or $\mathcal{T} \vdash_{\mathsf{T}} \mathsf{S}$

 (\Leftarrow) Assume $\mathcal{T} \nvdash_T R$ or $\mathcal{T} \vdash_T S$. We have to show that, in either case, we can prove $R \to S$.

Assume $\mathcal{T} \nvdash_{\mathbf{T}} \mathsf{R}$. Because \mathcal{T} is formally complete, this means that $\mathcal{T} \vdash_{\mathbf{T}} \neg \mathsf{R}$. Suppose the proof of $\neg \mathsf{R}$ uses the premises $\mathsf{P}_1, \ldots, \mathsf{P}_n$ and looks like this:

$$\begin{array}{c|c} & P_1 \\ \vdots \\ & P_n \\ \hline \vdots \\ & \neg R \end{array}$$

We can form a proof of $R \to S$ as follows:

$$\begin{array}{c} \mathsf{P}_1 \\ \vdots \\ & \mathsf{P}_n \\ \hline \vdots \\ & \neg \mathsf{R} \\ & | \ \mathsf{R} \\ & | \ \neg \mathsf{R} \\ & | \ \mathsf{R} \\ & | \ \bot \\ & | \ \bot \\ & | \ \mathsf{Intro} \\ & \mathsf{R} \rightarrow \mathsf{S} \\ & \rightarrow \mathbf{Intro} \end{array}$$

For the second case, assume $\mathcal{T} \vdash_{\text{\tiny T}} \mathsf{S}$. Suppose the proof of S uses the premises $\mathsf{P}_1, \ldots, \mathsf{P}_n$ and looks like this:

$$\begin{array}{c|c} & \mathsf{P}_1 \\ \vdots \\ & \mathsf{P}_n \\ \hline \vdots \\ & \mathsf{S} \end{array}$$

Then we can show $R \to S$ as follows:

$$\begin{array}{c} \mathsf{P}_1 \\ \vdots \\ \mathsf{P}_n \\ \hline \vdots \\ \mathsf{S} \\ \hline \mathsf{R} \\ \mathsf{R} \to \mathsf{S} \end{array} \rightarrow \mathbf{Int}$$

17.15 Lemma 3, Part 4: $\mathcal{T} \vdash_{\text{\tiny T}} (\mathsf{R} \to \mathsf{S})$ iff $\mathcal{T} \nvDash_{\text{\tiny T}} \mathsf{R}$ or $\mathcal{T} \vdash_{\text{\tiny T}} \mathsf{S}$

 (\Rightarrow) Assume $\mathcal{T} \vdash_{\mathsf{T}} (\mathsf{R} \to \mathsf{S})$. We need to show that either $\mathcal{T} \nvdash_{\mathsf{T}} \mathsf{R}$ or $\mathcal{T} \vdash_{\mathsf{T}} \mathsf{S}$. By Lemma 3, part 3, this result that we're trying to show is equivalent to $\mathcal{T} \vdash_{\mathsf{T}} \neg \mathsf{R}$ or $\mathcal{T} \vdash_{\mathsf{T}} \mathsf{S}$. By Lemma 3, part 2, this is equivalent to $\mathcal{T} \vdash_{\mathsf{T}} (\neg \mathsf{R} \vee \mathsf{S})$.

Toward a proof by contradiction, assume $\mathcal{T} \vdash_{\text{\tiny T}} \mathsf{R}$ and $\mathcal{T} \nvdash_{\text{\tiny T}} \mathsf{S}$. By Lemma 3 part 3, this is equivalent to $\mathcal{T} \vdash_{\text{\tiny T}} \mathsf{R}$ and $\mathcal{T} \vdash_{\text{\tiny T}} \neg \mathsf{S}$. By Lemma 3 part 1,

this is equivalent to $\mathcal{T} \vdash_{\mathrm{T}} (\mathsf{R} \land \neg \mathsf{S})$. By DeMorgan's law, this is equivalent to $\mathcal{T} \vdash_{\mathrm{T}} \neg (\neg \mathsf{R} \lor \mathsf{S})$. Combining this proof with the proof of $(\neg \mathsf{R} \lor \mathsf{S})$ above, and adding one step of \bot **Intro**, we get a contradiction. Thus our assumption, that $\mathcal{T} \vdash_{\mathrm{T}} \mathsf{R}$ and $\mathcal{T} \nvdash_{\mathrm{T}} \mathsf{S}$ is false. This means that either $\mathcal{T} \nvdash_{\mathrm{T}} \mathsf{R}$ or $\mathcal{T} \vdash_{\mathrm{T}} \mathsf{S}$, which is what we were trying to show.